Why Learning Maths is Like Learning Soccer
- Michaela Epstein

- May 13, 2020
- 3 min read
Updated: Jul 18, 2020
Right, let's get this out of the way. At first glance, a maths lesson and soccer practice don't seem anything alike...

Yet, scratch the surface and there are some important similarities that help to paint a picture of what learning both is all about. In this article, I'm going to take you through these and, don't worry, I'm not pulling your leg!
When I first heard maths and sport compared, it helped me to see how different aspects of learning maths fit together to create a balanced educational program. Instead of pitching teaching practices against one another, we can look at how those practices complement and enhance - and ultimately, why it's worth students having a range of learning experiences in maths class. By thinking about soccer, I got perspective on maths.
Here's how learning maths and soccer compare:
1. You Practice

When you're learning to play soccer, you practice skills. You practice dribbling a ball, kicking to a teammate, shooting for a goal.
Similarly in maths, you engage in regular practice, with multiplication facts, solving linear equations, finding the area of shapes and so on.
In both domains, practice is necessary if you want to get better.
A great deal of research has examined practice and the development of skill across many more domains than just maths and soccer. What is consistently found? Having a high IQ or being born with certain skills (i.e. innate abilities) isn't what matters in the long run. What is needed, however, is practice - and, not just any kind of practice. In their article on building expertise, Ericsson and colleagues (2007) noted:
"When most people practice, they focus on the things they already know how to do. Deliberate practice is different. It entails considerable, specific, and sustained efforts to do something you can’t do well—or even at all. "
For children, teens, elite athletes and mathematicians, deliberate practice underpins the pathway for improvement.
2. You Get Coached

Yet practice - deliberate or not - is challenging if you're doing it in isolation.
In soccer, a coach will give you tips on kicking with greater precision or show you how to get out of a difficult position when someone is defending against you. In maths, the teacher will introduce new concepts that will take what you ever knew about numbers (or algebra or shapes, etc.) to a much deeper level of complexity. They will suggest ways to organise your thinking or set out your work to help you make sense of the logic of a solution.
A coach or teacher helps focus and refine your practice. They will introduce new ideas and give you feedback that enables you to take your skills to new levels. From this, you can get perspective on the challenges you've overcome and what's still to come.
3. You Play

And all of this, ultimately, is so that you can bring those skills together and play a game. You don't learn soccer, just to do training each week. You learn it so that you can get out on the field, have fun and get a bit competitive.
It's the same with maths. Students don't learn maths just so they can acquire a selectively chosen set of skills. They learn it so they can bring those skills together and use them in meaningful or fun or competitive ways.

With this combination of Practice / Get coached / Play in mind, take a moment to stand back and reflect on what the maths program in your classroom or school looks like. As you reflect, you might consider questions like:
Why should I run different types of activities in maths class? What purpose do they serve?
How often should I run them?
How might I justify these activities to parents, school leadership and my students?
One last thought: I find it interesting how we say someone learns how to play soccer and they learn how to do maths. To me, this is indicative of how we tend to frame the goals of each. What if we re-framed what maths is about, and instead learned how to play maths?
Related posts:



Your point about the common hurdle students face in truly internalizing multiplication facts, rather than just rote memorization, really resonated with me. It highlights how crucial it is to move beyond simple recall and ensure a deeper conceptual understanding, often through consistent practice and varied learning approaches. Finding effective, easily accessible tools that support this consistent practice can sometimes be a challenge for both educators and parents. For anyone looking for a straightforward, visual aid to help reinforce these foundational skills, we've put together a comprehensive multiplication chart that might be useful.
A free multiplication chart is an invaluable aid for any student learning their times tables. Whether it's a printable chart they can keep on their desk or an interactive online version, seeing the patterns visually can greatly help with memorization. Many online resources also offer blank charts for practice or charts that go up to 1-100, providing a comprehensive tool. These resources make it easier for parents and teachers to support children as they build this fundamental math skill, often incorporating games to keep learning enjoyable.
For mastering multiplication, especially up to the multiplication chart 1-100, having visual aids and practice tools is key. Online platforms often provide free printable charts that kids can use for reference, as well as interactive games and exercises. These resources can cater to different learning styles and make the process of memorizing times tables more dynamic. The combination of visual charts, practice opportunities, and gamified learning can significantly boost a child's understanding and recall of multiplication facts, setting a strong foundation for future math success.